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Abstract

Increases in pinyon and juniper woodland cover associated with land-use history are suggested to provide offsets for carbon
emissions in arid regions. However, the largest pools of carbon in arid landscapes are typically found in soils, and aboveground
biomass cannot be considered long-term storage in fire-prone ecosystems. Also, the objectives of carbon storage may conflict
with management for other ecosystem services and fuels reduction. Before appropriate decisions can be made it is necessary to
understand the interactions between woodland expansion, management treatments, and carbon retention. We quantified effects
of prescribed fire as a fuels reduction and ecosystem maintenance treatment on fuel loads, ecosystem carbon, and nitrogen in a
pinyon–juniper woodland in the central Great Basin. We found that plots containing 30% tree cover averaged nearly
40 000 kg ? ha21 in total aboveground biomass, 80 000 kg ? ha21 in ecosystem carbon (C), and 5 000 kg ? ha21 in ecosystem
nitrogen (N). Only 25% of ecosystem C and 5% of ecosystem N resided in aboveground biomass pools. Prescribed burning
resulted in a 65% reduction in aboveground biomass, a 68% reduction in aboveground C, and a 78% reduction in aboveground
N. No statistically significant change in soil or total ecosystem C or N occurred. Prescribed fire was effective at reducing fuels on
the landscape and resulted in losses of C and N from aboveground biomass. However, the immediate and long-term effects of
burning on soil and total ecosystem C and N is still unclear.

Resumen

Incrementos de los bosques de piñón y enebro relacionados con el historial del uso de la tierra se han sugerido como una forma de
proveer desvı́os de las emisiones de carbón en zonas áridas. Sin embargo, los más grandes reservorios de carbono en zonas áridas se
encuentran originalmente en el suelo, y la biomasa aérea no puede considerarse almacenamiento a largo plazo en los ecosistemas que
están propensos al fuego. También, los objetivos de almacenamiento del carbono pueden entrar en conflicto con el manejo de los
servicios de los ecosistemas y la reducción de combustibles. Antes de que se tomen las decisiones adecuadas es necesario el entender
las interacciones entre la expansión del bosque y los tratamientos de manejo, ası́ como la retención de carbón. Cuantificamos los
efectos de las quemas prescritas como un tratamiento en la reducción del combustible y el mantenimiento del ecosistema en cargas
de combustible, carbono del ecosistema, y nitrógeno en el bosque de piñón–enebro en la gran cuenca central. Encontramos que
parcelas que tenı́an una cubierta arbórea del 30% promediaron casi 40 000 kg ha21 en total de la biomasa aérea, 80 000 kg ha en C
del ecosistema, y 5 000 kg ha de N del ecosistema. Solamente el 25% del C y el 5% el N del ecosistema existe en la biomasa aérea.
Las quemas prescritas reducen la biomasa aérea en un 65%, ası́ como el C aéreo en un 68%, y 78% del N de la superficie. No se
encontraron cambios estadı́sticamente significativos en el C o N del suelo o del ecosistema. Las quemas prescritas fueron efectivas en
la reducción del combustible en el paisaje y dieron lugar a las pérdidas de C y N de la biomasa aérea. Sin embargo, los efectos
inmediatos y a largo plazo de las quemas del C y N del suelo y del total del ecosistema todavı́a no son muy claros.
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INTRODUCTION

Vegetation changes associated with longer-term climate change
and anthropogenic disturbance have major effects on soils,

vegetation, and biogeochemical cycling (Schimel et al. 1991,
1994; Hibbard et al. 2003; Bradley et al. 2006; Blank 2008;
Hooker et al. 2008). Much of the Great Basin is currently
dominated by sagebrush (Artemisia tridentata Nutt. subsp.)
ecosystems, but at intermediate elevations with more mesic
climatic regimes, sagebrush ecosystems are increasingly influ-
enced by pinyon (Pinus monophylla Torr. & Frém, Pinus edulis
Engelm.) and juniper (Juniperus osteosperma [Torr.] Little,
Juniperus occidentalis Hook.) expansion. Pinyon and juniper
woodlands have expanded their pre-European settlement range
in the Great Basin by more than 60% since 1860 because of
climate change, fire suppression, and overgrazing by livestock
(Miller and Wigand 1994; Gruell 1999; Miller and Rose 1999).
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Although pinyon–juniper woodlands have expanded and
receded several times over the last 5 000 yr, the current rate
of expansion is unprecedented.

Some scientists hypothesize that woodland expansion could
result in large increases in carbon (C) storage within the interior
west (Norris et al. 2001; Anser et al. 2003; Hibbard et al. 2003;
Canadell and Raupach 2008; McKinley and Blair 2008). It is
possible that increasing tree cover could temporarily increase
biomass and C storage; however, due to the frequency of fire in
Great Basin ecosystems (15–100 yr) expansion woodlands
should not be considered long-term C storage because C in
biomass is released to the atmosphere during fire and
subsequent decomposition (Miller and Tausch 2001; Canadell
and Raupach 2008; Hurteau and North 2009).

Increasing tree cover in sagebrush ecosystems can lead to a
detrimental decrease in herbaceous understory biomass (Suring
et al. 2005; Chambers et al. 2007). Landscapes with high tree
density and compromised understory vegetation are susceptible
to catastrophic wildfire and exotic grass invasions (Young and
Evans 1973, Miller and Tausch 2001, Chambers 2005). Once
exotic grasses such as cheatgrass (Bromus tectorum L.)
establish on the landscape, a shift to annual grass dominance
may result in considerably lower potential to store C, and may
create a C source by decreasing the fire-return interval (Young
and Evans 1973; D’Antonio and Vitousek 1992; Bradley 2006).

Re-establishing fire as an ecosystem process through planned
or unplanned fires reduces woodland cover on the landscape,
maintains herbaceous species, and discourages exotic grass
invasion (Miller and Tausch 2001). Carbon storage decisions
must consider not only the current vegetation state, but also
future states and the potential effects of climate change and exotic
invasion on the fire regime associated with those states (Hurteau
and North 2009). Because nitrogen (N) is often the limiting factor
in semiarid systems after water, and because C and N cycling are
so closely linked, it is important to understand potential changes
in N cycling as well (Johnson and Curtis 2001).

In this study we addressed three questions: 1) How does
prescribed fire affect biomass and fuel loads in Great Basin
expansion woodlands? 2) How does prescribed fire influence
the release of C and N from the system? 3) Which pools of C
and N are most responsive to prescribed fire?

METHODS

Experimental Area
The study is located within a Joint Fire Sciences Program
demonstration area in the Shoshone Mountain Range on the
Humboldt–Toiyabe National Forest (Austin Ranger District) in
Nye and Lander Counties, Nevada. Underdown Canyon (lat
39u59110N, long 117u359830W) is oriented east to west.
Elevation ranges from 2 072 m to 2 346 m. Average annual
precipitation ranges from 23 cm at the bottom to 50 cm at the
top of the drainage and arrives mostly as winter snow and
spring rains. Average annual temperature recorded in Austin,
Nevada located near the site ranges from 27.2uC in January to
29.4uC in July. Lithology of the Shoshone range consists of
welded and nonwelded silica ash flow tuff. Soils developed on
alluvial fans and are classified as coarse loamy skeletal mixed
frigid Typic Haploxerolls (Rau et al. 2005).

The vegetation is characterized by mountain big sagebrush
(A. tridentata Nutt. subsp. vaseyana [Rydb.] Beetle), with some
Wyoming sagebrush (Artemisia tridentate subsp. wyomingensis
Beetle & Young), yellow rabbitbrush (Chrysothamnus viscidi-
florus Hook. [Nutt.]), single-leaf pinyon, Utah juniper, and
associated herbaceous species. Bromus tectorum, an invasive
annual grass, was not a large component of the study area.
Vegetation occurs in patches of variable tree dominance typical
of intermediate age class woodlands in the central Great Basin.

Study Design and Data Collection
The study plots were located on northeast-facing alluvial fans at
elevations of 2 195 m and 2 225 m. The plots at elevation 2 195 m
were a control, and the plots at 2 225 m received a spring
prescribed burn. Four 20 3 50 m subplots were located on both
the control and burn treatment. Plots were characterized by
intermediate tree cover (< 30% cover) at both elevations and
contained a mix of trees, shrubs, and interspaces. Vegetation
assessments were made on all plots prior to burning in June–July
2001, and after burning in June–July 2002. US Department of
Agriculture Forest Service fire personnel burned the study plots on
11–14 May 2002 (air temperature , 32uC, relative humidity
. 15%, wind speed , 9 m ? s21, and gravimetric live fuel moisture
< 40%). Fire behavior was characterized by creeping ground fire
with some single and group tree torching. During the fire soil
surface temperatures measured with heat-sensitive paints on
metal strips reached 370uC under shrub canopies, 300uC under
tree canopies, and 200uC at interspaces, but measurable quantities
of heat were not transferred below 2 cm (Rau et al. 2005).

Soil and Roots
Soil pits were used to characterize the study plots. Pits were dug
to a depth of 53 cm until large-grained alluvium (. 30 cm) was
encountered and the soil horizons were identified. Depth
increments for sampling were assigned to the approximate soil
A1 horizon and subsequent 15-cm increments (0–8, 8–23, 23–
38, and 38–53 cm). Bulk density samples were collected from
each depth with the use of a 93-cm3 soil core. To evaluate soil C
and N soil samples were taken from three microsites (under tree,
under shrub, interspace) for each depth with a 10-cm-diameter
bucket auger. Sampling was conducted in November 2001
(preburn) and again in November 2002 (postburn) to determine
fire effects on soil C and N. All soil was brought back to the lab,
dried at 60uC, and sieved to 2 mm. The , 2-mm fraction was
then ground in an IKA impact head mill and analyzed for total C
and N concentration with the use of a LECO TruspecH CN
analyzer. To examine site level changes in C and N content, data
were transformed into kg ? ha21 (Rau et al. 2009a).

Root biomass was estimated for each subplot, microsite, and
depth post hoc in 2005 with the use of a diamond-tipped rotary
core device (Rau et al. 2009b). Coarse roots and rock were
separated from soil with the use of a 2-mm sieve. Coarse roots
were then separated from rock by flotation in water, dried,
weighed, then ground in a UDY cyclone mill and analyzed for
total C and N concentration with the use of a LECO TruspecH
CN analyzer (Rau et al. 2009b).

For the soil profile, soil and root C and N (kg ? ha21) was
summed by the four soil depths to 53 cm. Then the total mass
of soil and root C and N at each microsite was weighted by that
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microsite’s cover percentage on the subplot. The sum of all
three weighted microsites was the sum of soil and root C and N
on each subplot.

Understory Biomass and Litter
Understory vegetation in each subplot was sampled in 50 1 3

2 m microplots. Ten plots were located contiguously along five
belt transects perpendicular to the long axis of the subplot.
Regression was used to model biomass by species for live and
dead categories of 1-h (, 6.35 mm), 10-h (6.35–25.4 mm),
100-h (25.4–76.2 mm), and 1 000-h (. 76.2 mm) time-lag fuels
based on field measurements of plant size, cover, and plant
weight (Tausch and Tueller 1988; Reiner 2004).

Shrub litter mats were sampled under 18 yellow rabbitbrush
and 36 sagebrush (a combination of mountain and Wyoming
big sagebrush). A 100-cm2 frame was placed approximately
halfway between the stem and the outer edge of the litter mat of
each shrub to collect samples representative of the entire litter
mat (Brown 1982; Reiner 2004). Regression equations were
developed to relate shrub litter mass to shrub cover and
estimate shrub litter mass on each plot.

Tree Biomass and Litter
Tree biomass was estimated in each subplot by measuring total
tree height, crown height, longest crown diameter, crown
diameter perpendicular to the longest diameter, and trunk
diameter just above the root crown for each individual tree
rooted within the subplot. Tree biomass (1–1 000-h fuels) for
each plot was calculated with the use of volume vs. mass
regression equations. Equations were developed with 36 trees
ranging from 1 m to 6 m in height. Trees were harvested (18)
before and (18) after burning, separated by time-lag fuels,
dried, and weighed (Tausch 2009).

Tree litter mats were sampled under 17 pinyon pines with
crown diameters ranging from 1.8 m to 7.0 m. Complete crown
and litter mat dimensions were collected in order to derive
relationships between litter mat area and litter mat mass. One
to three 33.5-cm-diameter rings were evenly spaced on either
side of the tree bole depending on its size. Litter was removed
by horizon (Oi, Oe, and Oa), bagged, and brought back to the
lab. Litter samples were floated to remove mineral fragments,
separated by fuel time-lag size, dried, and weighed. Regressions
were then developed between litter biomass and tree crown
area to estimate total subplot tree litter mass.

Biomass Carbon and Nitrogen
Six subsamples were randomly selected from each biomass
component (grass, forb, shrub litter, live and dead shrub 1–
1 000-h fuels, tree litter, and live and dead tree 1–1 000-h fuels)
pre- and postburn for chemical analyses. Samples were ground
in a WileyH mill and analyzed for total C and N concentration
with the use of a LECO TruspecH CN analyzer. The percent C
and N for each biomass component was multiplied by the total
mass of that component in each subplot. Biomass C and N were
scaled to kg ? ha21.

Statistical Analyses
The Kolmogorov–Smirnov test was used to test for data
normality. All data were natural log transformed to meet the

assumption that the data were normally distributed. Compar-
isons were evaluated with the use of SAS2 mixed-effects
models with repeated measures and subplot as a random effect.
The year by treatment interaction term was used to identify
changes caused by the prescribed fire (P , 0.05). Means
comparisons were made with Tukey’s test (alpha 5 0.05).

RESULTS AND DISCUSSION

Biomass and Fuels
Tree-cover values on our plots average 30% and represent total
aboveground biomass approaching 40 000 kg ? ha21. Trees
represent over 80% of total biomass in these expansion
woodlands (Table 1). Tree abundance relative to that of the
understory can be expected to increase as the stand matures
(Miller and Tausch 2001; Reiner 2004). Preburn root biomass
in our plots was measured to be one-third of aboveground
biomass (Table 1). This is less than some estimates of root-to-
shoot ratios in cold semiarid systems (Jackson et al. 1996).
However, most other reports for cold deserts come from
sagebrush-dominated stands that have less aboveground
biomass than pinyon woodlands. It is also possible we were
not able to quantify all roots because our sample depth was
limited to 53 cm.

Prescribed burning removed nearly 65% of total above-
ground biomass, including 90% of herbaceous, litter, and
shrub fuels (Table 1). Observations from the site show that
herbaceous fuels recovered to preburn levels by summer of
2003 (Dhaemers 2006). Burning also removed 56% of tree
biomass with over 90% of foliage and 1-h fuels being removed,
leaving predominantly 10-h, 100-h, and 1 000-h fuels (Ta-
ble 1). Aboveground biomass remaining on our plots following
the fire was approximately 15 000 kg ? ha21 (Table 1). Pre-
scribed burning resulted in a 33% reduction in root biomass on
our plots measured 3 yr following the burn (Table 1).

Ecosystem Carbon
Preburn soil pools accounted for the largest proportion of total
ecosystem C (Table 2). The magnitude of soil C to a depth of
53 cm in our plots (50 000–75 000 kg ? ha21) is similar to values
obtained from sagebrush plots sampled to 100 cm (62 000–
72 000 kg ? ha21; Hooker et al. 2008). Preburn aboveground
biomass on our plots accounted for just over 20% of ecosystem
C (Table 2). Trees accounted for 85% of aboveground C,
whereas shrubs and litter comprised about 7% each, and
herbaceous biomass accounted for less than 1% of above-
ground C (Table 2). Our estimates for C stored in aboveground
biomass in transition woodlands are lower than values reported
by similar studies in sagebrush (3 800 kg ? ha21; Hooker et al.
2008) and pinyon woodlands (67 500 kg ? ha21; Klopatek et al.
1991). However, additional measurements from this study
show that as stands mature and crown cover in-
creases, aboveground C increases to approximately 70 000
kg ? ha21 in closed-canopy pinyon stands. Root C accounts for
about 5% of total ecosystem C in our study, but may play a
very important role in long-term C storage because roots exude
carbohydrates and fine roots turn over very rapidly in soils,
providing a substrate for microorganisms to convert to less
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labile forms of soil C (Table 2; Schlesinger 1977; Schimel 1995;
Strand et al. 2008).

Burning released 13 000 kg ? ha21 C from aboveground
biomass on our plots (Table 2). This is consistent with the
only other study we could find measuring C loss from fire in
pinyon and juniper woodlands (12 600 kg ? ha21; Klopatek et
al. 1991). Burning consumed 90% of herbaceous, litter, and
shrub C and 90% of fine aerial fuel C (foliage and 1 h), leaving
predominantly 10-h, 100-h, and 1 000-h woody C (Table 2).
Over time these residues likely will fall to the ground and a
large portion (85–92%) of this remaining pool will be lost as
microbial respiration, but some will be incorporated into soils
(Johnson and Curtis 2001). Prescribed burning resulted in a
31% reduction in root C as observed 3 yr following the burn
(Table 2). In addition to tree and shrub roots decomposing
after fire, it is possible that some losses in root C are being
offset by new fine roots from perennial herbaceous vegetation
re-establishing on the site (Rau et al. 2009b). Although
prescribed fire had significant impacts on aboveground C pools
and root C, we were unable to detect a statistically significant
change in soil C, although chemical analyses of soil samples
show that C concentrations increase near the surface following
fire (Rau et al. 2009a). Similarly, because soil C is such a large
portion of total ecosystem C there was no significant change in
total ecosystem C following the prescribed fire.

Ecosystem Nitrogen
Prior to burning total ecosystem N averaged greater than
5 000 kg ? ha21. Total soil nitrogen accounted for over 90% of
total N on the site. Roots and total aboveground biomass only
accounted for 2% and 4.5% of the total N, respectively
(Table 2). Soil N on our plots was six times higher than values
reported by Klopatek et al. (1991) for pinyon and juniper

woodlands, although their study only sampled soil to 20 cm.
Soil N on our plots is similar to sagebrush plots sampled to
100 cm by Hooker et al. (2008; 7 000–8 000 kg ? ha21).

Prescribed burning removed 227 kg ? ha21 or roughly 80% of
aboveground N (Table 2). Nearly 90% of herbaceous, litter, and
shrub N was removed (Table 2). This value is similar to values
reported for other pinyon and juniper woodlands (167 kg ? ha21;
Klopatek et al. 1991). Although a large proportion of above-
ground N was lost during the fire, the amount of N removed from
aboveground biomass represents less than 5% of total ecosystem
N (Table 2). Although prescribed burning removed N from
aboveground pools, no significant reduction in root N was
observed 3 yr following the burn, and no significant change in
soil N occurred. However, similar to C there were observed
increases in soil N concentrations in near surface soils after the
burn (Rau et al. 2009a).

MANAGEMENT IMPLICATIONS

Prescribed burning was effective at reducing total aboveground
biomass within our central Nevada study plots. Due to the
stratified sampling design and low number of replicates in our
study, fire effects on soil C and N pools were highly variable,
not statistically significant, and difficult to interpret. However,
some increases in soil C and N could have occurred. Spatial
heterogeneity and measurement uncertainty in soil C and N
pools is a challenge when assessing whole ecosystem changes
associated with vegetation change and land management
because of the large proportion of these elements in soil.
Researchers and managers must take care to quantify existing
soil C and N pools, and changes that may occur due to
treatments, adequately. Although prescribed fire caused imme-

Table 1. Means, standard errors (SE), statistical letter group (SLG), mass change, and percent change for individual biomass components before
and after the prescribed burn on control and burn plots. Asterisks indicate a significant change (P , 0.05).

Mass 2001 (kg ? ha) Mass 2002 (kg ? ha) Mass change
(kg ? ha21) Mass change (%)Control 2001 Burn 2001 Control 2002 Burn 2002

Control Burn Control BurnMean (SE), SLG Mean (SE), SLG Mean (SE), SLG Mean (SE), SLG

Roots 0–53 cm1 13 242 (1 606), A 13 242 (1 606), A 13 242 (1 606) A 8 808 (559), B* 0 24 433 0% 233%

Herbaceous understory 388 (37), A 297 (24), A 309 (44), AB 26 (8), B* 278 2271 220% 291%

Shrub litter 1 052 (136), A 1 304 (241), A 804 (271), AB 130 (24), B* 2248 21 173 224% 290%

Shrub foliage 435 (64), A 575 (104), A 283 (90), AB 58 (10), B* 2152 2517 235% 290%

Shrub 1 h 1 020 (163), AB 1 322 (237), A 549 (181), AB 132 (24), B* 2471 21 190 246% 290%

Shrub 10 h 693 (82), A 835 (145), A 460 (150), A 83 (14), B* 2234 2751 234% 290%

Shrub 100 h 1 031 (126), A 1 151 (212), A 651 (217), AB 288 (53), B* 2380 2863 237% 275%

Shrub 1 000 h 10 (3), N/A 0 (0), N/A 1 (1), N/A 0 (0), N/A 28 0 285% 0%

Shrub total 2 779 (591), AB 3 490 (910), A 1 555 (648), AB 538 (100), B* 21 224 22 951 244% 285%

Tree litter 3 184 (1 124), AB 3 830 (1 178), A 2 819 (1 018), AB 307 (61), B* 2365 23 523 211% 292%

Tree foliage 4 684 (1 004), A 5 659 (914), A 4 809 (858), A 410 (111), B* 125 25 248 3% 293%

Tree 1 h 2 725 (718), A 3 807 (758), A 2 975 (656), AB 937 (219), B* 250 22 870 9% 275%

Tree 10 h 4 566 (956), A 4 531 (875), A 4 659 (813), A 2 734 (413), A 92 21 797 2% 240%

Tree 100 h 5 486 (1 380), A 5 013 (1 490), A 5 694 (1 185), A 3 266 (812), A 208 21 748 4% 235%

Tree 1 000 h 9 496 (2 769), A 10 985 (2 038), A 10 116 (2 421), A 4 139 (1 101), A 620 26 845 7% 262%

Tree total 30 981 (6 359), A 30 849 (5 731), AB 31 701 (5 422), AB 13 542 (2 402), B* 720 217 308 2% 256%

Aboveground total 38 029 (6 643), A 39 356 (5 907), AB 36 879 (5 938), AB 14 485 (2 350), B* 21 151 224 871 23% 263%
1Roots were measured post hoc in 2005.
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diate decreases in aboveground C content, this short-term loss
must be placed into perspective with regard to the risks of
wildfire and long-term processes that drive C and N
accumulation and retention. Fire-induced losses of C and N
from the existing condition may not constitute net loss when
viewed from the perspective of a woodland developing from a
treeless sagebrush stand. Ultimately the total net gain or loss of
ecosystem C and N caused by woodland expansion and
burning could be determined by the completeness of decom-
position, and the vegetation that returns to the site following
the burn (D’Antonio and Vitousek 1992; Johnson and Curtis
2001). If a healthy sagebrush or low-density woodland system
returns to the site, then perhaps C and N are gained following
fire, even if all standing dead biomass decomposes. If an annual
grass monoculture invades the site and the fire-return interval
decreases, then the ecosystem may become a C source. These
data represent an initial effort to quantify the effects of
prescribed burning as a fuel-reduction treatment on whole-
ecosystem C and N in expansion pinyon and juniper
woodlands. Further work must be done to quantify the effects
of burning on soils, to assess the effects of burning over a broad
range of tree cover and abiotic conditions, and to determine the
effects of burning over longer time periods.
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Mass change (kg ? ha21) Mass change (%)Control 2001 Burn 2001 Control 2002 Burn 2002

Control Burn Control BurnMean (SE), SLG Mean (SE), SLG Mean (SE), SLG Mean (SE), SLG

Soil 5 376 (247), A 4 467 (196.9), A 5 351 (226), A 5 294 (268), A 225 827 0% 19%

Roots1 110 (14), A 112 (19.3), A 110 (14), A 102 (3), A 0 210 0% 29%

Litter 66 (18), AB 100 (7.7), A 61 (19), AB 8 (1), B* 25 292 28% 292%

Herbaceous 3 (1), A 3 (0.2), A 3 (1), A 0 (0), B* 21 23 218% 287%

Shrub 12 (1), A 13 (1.8), A 10 (1), A 2 (0), B* 22 211 213% 286%

Tree 161 (11), A 175 (8.8), A 167 (22), A 53 (1), B* 6 2122 4% 270%

Aboveground

biomass 242 (14), A 291, (16.0), A 240 (19), A 63 (1), B* 21 2227 21% 278%

Total ecosystem 5 728 (244), A 4 870 (218.3), A 5 701 (231), A 5 459 (268), A 226 589 0% 12%
1Roots were measured post hoc in 2005.
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